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The Instability of a Rotating Fluid Sphere 

Heated Prom Within 

By Hitoshi Takeuchi  and Yasuo Shimazu 

Abstract 

In the  present paper,   the  Benard's  cell problem  in  a 

rotating  sphere   is  studied.     By  a preliminary  study  in section  3, 

it   is   shown that   the  rotation  stabilizes the   convection  currents 

and  tends   to make   the   scale   of  the   convective   cells   smaller.      In 

section 4  it   is   shown  that  each poloidal mode   of  the motion  can, 

in  a non-rotating  sphere,,  be   excited  independently,     As   is   shown 

in  section 5,   this   is  not  the  case   in  a rotating  sphere.     Each 

motion  is   then composed  of  infinite  numbers  of poloidal   and 

toroidal modess     To  this rather  complicated  case,   the   general 

results   in  section 3  can still  be   applied.     In  connection with 

the  present problem,   a method   is given  in  section 8  to get  an 

equivalent  viscosity  coefficient  of magnetic fields. 

*)     This  paper   (hitherto  unpublished)   was   completed previous 
to Dr.  Takeuchi's   joining  this  project.     It  Is  here  reproduced  on 
account  of   its   importance  for  the  hydro-magnetic  theory  of  the 
earth's  liquid  core.     (W.   M.  E.) 
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1. In  a  series   of  previous  papers   (H.   Takeuchi  and Y.   Shim&zu, 

1952,   1953).   it  was   shown   chat   a self-exciting process   is  possible 

by which the   earth's main magnetic field may be  produced  and 

maintained.     The   self-exciting  process   is   considered  to be main- 

talned.by  the   Induction  currents  caused by the motions   of  the 

fluid  of which the   earth's  core  is  composed.     In  order to make 

the   study  on the   self-exciting  dynamo  complete,   however,   there 

remains   another  problem to   be   solved.     That   is  the  problem  of   the 

fluid motion  itself.      Is   it  possible   that  the  required fluid 

motion takes  place   in the   earth's  core,   and what   are  the  conditions 

for this?     Is  the fluid motion appropriate   to maintained  the 

self-exciting dynamo?    These   questions  will  be   considered  in 

the   present paper. 

2. After considering  all possibilities,   it  is now believed 

that the fluid motion  in the  earth's  core   is  the  connective  one 

caused by non-homogeneous heating  of the fluid  (E.  C.  Bullard, 

1949s    W„  M. Elsasser,   1950).      In fact,   our previous  studies, 

referred  to   above,   are  based  on this   convection-current model» 
2c The  S2  -type  velocity field  in  these  papers   is  nothing but  the 

mathematical  expression for the  convection current.     It   i3   this 

S?"-type  velocity field  that makes   our  self-excited  dynamo 

possible.      In  view  of  these  circumstances,   our  immediate  problem 

may be   stated  as  follows: 

(1) Can' a  stationary fluid motion of S     -type  take place 

in  the  earth's   core,   and under what   conditions? 
2c (2) It must be  shown that  the S0   -type  velocity field  is 
Li 

2c the easiest type of motion to excite.. Otherwise, the S2 -type 
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velocity field may be overcome by fluid motions of other, more 

powerful types. 

2c The   stationary  velocity field  of  S~   -type  reminds us   of the 

well-known Benard cell.     It may be  that, the fluid motion  In the 

earth's  core  is  of  a character  similar to the Benard cell  in 

a vessel heated  from below.     This will be   the main point  of 

view of  the  present   study.     Many studies  have  been made  on the 

convective motion  of  a viscous  fluid heated from bellow.     In  almost 

all  these  studies,   the  problem  is  treated for plane boundaries, 

and  the  effects  of rotation upon the fluid motion are net taken 

into  account.     In the next  section,   taking the  earth's rotation 

into  account,  ws  shall   treat the problem for plane boundaries. 

3» We  shall  consider the  fluid of  density /° t  viscosity \i, 

kinematical  viscosity v - £,   thermal  diffusivity -k    and  coeffi- 

cient  of   thermal  expansion a*     The fluid  is  contained   in two 

walls placed horizontally at a vertical distance  of , h• 

Fig.   1 
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The  fluid   is  heated from below.     The  temperature  gradient   in a 

state  of no convection  is  (3.     Referring  to the  rotating rect- 

angular  coordinates   as   shown  in Fig.   1,  we have  the  following 

equations 

p Dw   . BP r,2„ - 
^ Dt  ~   " H T  ^   W  "   ^fe* 

§| « Ic  V2T. (3.1) 

Customary notations  are used.     Attaching the  suffixes o  to the 

quantities  In the  state  of no convection,* ws  have 

u    «• v    =* w    » 0  ,     P    =P  (z)   .    T    = T^(z)t o o o *o o*o o       * 

dT 
,-a- - pz   ,     pQ =   ^g  (1  -aTQ), 

aP 
~ Hi2 ~   ^o£  = °' (3-2) 

p        being  a certain mean density corresponding  to  a certain mean 

temperature   (or height,   z}«     We  shall  put 

P - F     + P*   ,     T = 1'     + T*   ,   p   ap     +/O* (3 = 3) 

for p, T and f>   in (3.1), and neglect the second order terms in u, 

vs w, p s T  and JO   . furthermore, we shall assume that the density 

variation of the fluid is caused by the thermal expansion only and 

that the fluid behaves otherwise as if it were an incompressible 

one.  Thus we get 

(° - p      (1-aT) , p    »  - /9      off'.        (3.4) ' 0,0      -ft ' o,o ' 



du  9v  Sw _ n 
3x  9y  3z (3.5) 

Inserting (3.2) - (3.4) Into (3.1) and denoting p , T  and/? * '  o, o 
as p,  T  and p    anew, we have  for the   state  of  stationary convection 

y V2
U - * |E + 2*5 v =  0, p   ox ' 

VV    V - 7 % " 2"u = °» 

k72T  +  pw =  0. (3.6) 

While   the   above  equations  were  obtained for   an   incompressible  fluid, 

H.   Jeffreys   (1930)  has   shown  that   the   same  equations  can  also  be 

applied  to  compressible  fluids  provided  the  density does  not  vary 

greatly within the  system and provided also we  interpret (3 as  the 

temperature  gradient  In excess  of the  adiabatic  one.     Putting 

( u,^BT)  = 0»mu+n5r\u(z),   v(z), w(z),  p(z), T(z);,    (3.7) 

we get five ordinary differential equations for five unknown 

functions u(z), v{z)„   -  -  - -.  Putting 

(3.8) 

and  eliminating u(z),   v( z),  w(z)   and p(z)  from  (3.5)   -  (3.7),  we 

have 

m2 + n2 =  (itb )2   ,     z = -fa- 

",d2        A2,3   .   ,25b*x2 d2     ,  ?tm2b2>ia4a(3g 

In order   to  get  a  quantitative  result,  we  shall   assume 

dy 

T = 0.      (3.9) 

0 (3.10) 

at   ^ = 0  and 1.     By  (3.10)   the   temperature  at the  two free boundaries, 
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2  -  0,   and  2   - h  is  kept  constant.     These  boundary conditions   are 

satisfied by putting 

ToC   sin  a%V    (s  =  1,   2,   — -). (3.11)* 

Inserting   (3.11)   into  (3„9),  we  get  the   following  condition for 

stationary convection 

X = Si  (b2  +  s2)3 +   (M£)2   •! , (3.12) 

where 

x - 4^ • (3-15^ 
In the case where the value of A in (3.13) is larger (or smaller) 

than that given by the right-hand side of (3.12), the fluid motion 

is considered to be unstable (or stable) and growing (or damped). 

Keeping ( ••" )  as a parametric constant and making use of (3.12), 

we can determine the critical value X as a function of b and s. 

The value of \  thus considered may become a minimum for certain val- 

ues of b and s.  As the value of A in (3.12) is -a monotonieally 

increasing function of a, we have s = 1 as the value of s for 

which A in (3.12) is a minimum. Thus, putting s = 1 ans <*£• = 0 

in (3.12), we can determine the value of b for which X has its 

minimum.  The value obtained is an increasing function of 

2ffih  2 
(———») o  In any case, inserting the value of b into (3.12), we 

get tha minimum value of X. This minimum value is once more an 

2~Vi~ 2 
increasing function of (• • • ) . The reason for the existence of 

these relations is as follows;  In a convective fluid motion the 

temperature gradient is a destabilizing factor, while viscosity and 

Coriolls force are stabilizing factors.  The stabilizing action of 

the Coriolls force is studied and appreciated in dynamical meteo- 

rology.  In (3.12),; the second term of the right-hand side of the 



equation denotes  this   stabilizing   action  of   the Coriolis  force. 

The  first  term  of   the  right-hand   side   denotes   also   the   stabilizing 

action  of  the   viscosity,   while   the   left-hand   side   of   (3.12)   shows 

the  destabilizing  action  of   inhomogeneous  heating.     Equation   (3.12) 

shows  that  the   convectiva  fluid motion can  exist  stationarily when 

these  stabilizing  and unstabilizing   actions  balance   each other. 
25ir     2 Thus we  can understand  the  X   (minimum) "•— (—=—)     relation  obtained 

above.     Furthermore,   as   is   shown  in dynamical meteorology,   the   stab- 

ilizing  action  of  the  Coriolis  force   is more  powerful for  larger- 

scale fluid motions,  while   that  of  the  viscosity  is more  powerful 

for  smaller-scale motions.     These   circumstances   are   reflected   in 

(3.12).     Thus,   the  first   (second)   term of  the  right-hand  side   of 

(3.12)   becomes   larger  for  larger   (smaller)   values of b,   that   is, 

for  smaller   (larger)   scale motion.      In  short,   the   action  of   the 

Coriolis  force makes  fluid motions   of  a  smaller   scale  easier  to 

excite  relative   to  larger-scale motions.     This  is  the  reason for 
Pf"\Vi      p the b •—' (— )     relation obtained  above.     Prom the  above physical 

considerations, we may safely assume  that  the   similar relations,, 
— 2 2 

namely,  X(min) <— (§S2^)2sridb^2S^.)2 -will atefib* ^atetalj^ 

conditions  other   than those   assumed here.     The  existence   of   the 
_ 2 

relation b '-—' (—rr—)  is favorable for our present purpose.  The 
2c reason is aa follows:  Since the S? -type fluid motion is of a 

smaller scale than some of the more symmetrical motions, we cannot 
P e expect that the Sg~-type motion is the easiest motion to be 

excited (as was expected in (2) in \   2) without the relation 
PfVh   P QA 

b ~*  (. _) ,  in short, while the S  motion is not the easiest 

motion to be excited in the case when (a -  0, we may expect it 
2&£h 2 will become so for a certain value of (——^-)   •  This is the most 



important result obtained in this section. 

4.    We shall MOW consider convectlve fluid motions in a spherical 

vessel of radius a.  Referring to the rotating coordinates in Fig. 2, 

we have the following equations: 

p SI- 

Fig. 2 

2-> as ^ grad p + \iV  u - 2p (a - a a. 

DT _ ,.^2, 
5F ^ = k^T + Q) .(4.1) 

where u, oo and g denote the displacement (of the fluid relative 

to the above coordinates), rotation (of the spherical vessel) and 

gravity vector respectively, A source of heat is assumed. The 

rate of he it generation is assumed such thats in the absence of 

heat conduction and convection, the temperature would rise at a: 

uniform rate ( H) .  Thus in the state of no convection, we have 

0 = Us. = k^72T  + (H) 
1¥ 

In a sphere of radius as this gives 

(4.2) 



_  _ © .   2   2, _ Q_ 
o    Bk (a   - r } = fir(a " r }      '(4'S) 

where 

3*- 5f fi^Vg*^ (4.4) 

is the temperature gradient at r = a.  In (4.4), Q, and ^ck are 

the heat generation (per unit time and volume) and heat conduc- 

tiviyt, respectively.  In the same way as in e 3, wa get from 

(4.1) - (4.4) 

vV2U  - i grad p  - 2(co> x u)  +  dgT  =  0 ,(4,5) 

o u    dT R 
V2T  =^3^    =  -Is    ^ ,(4.6) 

div u = 0 .(4.7) 

In (4.6),  u    means the radial velocity in the   spherical co= 

ordinates  in Fib.  2.     In these  spherical coordinates, we have 

also 

u =  (u„,   u ,  u.),     w~ =  (to cos <S,   - 5 sin£,  0), 

g =  (g,   0,   0) .(4.8) 

The forms  of velocity vectors u satisfying  (4.7)   are known 

(H.   Takeuchi,   1350): 

Type J[ 

r ur =  (n Fn,m + r\tJ  Qn,m' 

f £~      \ 



-10- 

where G>. is a solid spherical harmonic of degree n and is 

expressed as follows 

CO n,m 
= rns        (§, <P)  = rn?ca{e)elta<t> .(4.10) n.nr   ' r n 

In  (4,, 10),   s is- a surface   spherical harmonic,   and P    is  a 

-  velocity vector  of type  1,  we  have   also iiegenare  I unction.     * ux-   uuo 

r       dF dG 1 
dlv 5 » 0 =   I  § -L^S + r _^£ +   (n+3)Gv, J  fi„ „   ,(4.11) 

(V2u)x 

/ 
/x\ 

|p    !Mn/g^!7  j  %m 
\   -r 

\z / 
a 

."55"/ 7 

r(V2u). \ 1JUL 
ft \        + r  g        )  o> nsm n^m      n.m 

r(V2u)e 
= ,f / 3 

2-» n9m "S£ 

(V   »>4>=?^ **< \sin 03?/ 
n ,(4.12) 

in which 

nsm 
.B.J-B    *     g     Pr 
dr n,m 

2 
» d G

"»M + 2(n-t-2)   dGn,m 
.m j  3 r dr »-* dr 

.(4.IS) 

Another type of u  satisfying  (4.7)   is  as follows: 

CifXO. 
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u     = 

tu  - *e L 
3w 

u. 

n,m  sin  d 

9co 
T n.m 

TlgTB.      9© 

div u = 0 

p 

(V2u) 

(72u). 

/ 9 

/  : 
4rX 

1       (r) n,m 
-   Xi 9x      ~9z 

xay " yaE 

10) n,m 

,(4.14 

,(4.15) 

{V   U)„ =  0 

>2 9(0 
(V  u)6 = In.m(r)   sla'Sd* 

(7 u)   = i n.m 
xi. in wO 

,(4.16) 

n.m 

o 
d Ln.m   .   2(n+l)   dLn.m 

. 5      +       r 5r~ dr 

The  Laplacian of T   In  (4.18)   Is   as  follows 

v   ~ n.m n.m*       n.m 
n.m   .  2(n+x)       n« 

.(4.17) 

Taking   (4.5)   and  (4.6)   into   consideration,  we may  assume 

T  = T       (r)w       ,     P - %     Ar)Zy    _ (4.18) n.mv    '  n.m* n.m n.m 

for u of type I.  For u of type II, we may take 

T - 0,  F = 0 

dr 
2" v dr 

f A       1 O \ 

..(4.2*^ v; 

Accordingly equation (4.6) is satisfied by putting 
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t   = - fi- (nF   + r2G   ) ..{4.21) n.m    ka   n.m     n.m *    ' 

Furthermore, If we omit the term 2(w x u) in (4.5), we may satis- 

fy equation (4.5) by putting 

P ,   &(rn%       ) 
V(nf   + r g   ) —r      ,r,n°Til + agrT   = 0,(4.22) x  n.m    &n.m'    n-1    ar       ° n.m   ,v 

^r 

Vf    -in    =0 ,(4.23) n.m <°    n.m 'N    ' 

1   = 0 or L   =0 .(4.24) 
n.m        n.m 

Thus, when w = 0, we get (4.11) and (4.21) - (4.24) from (4.5) - 

(4.7).  These are five relations among five unknowns F   , 

G   , L   , T   , and it   •  Vectors of type I and II are usually 
n.m'  n.m*  n.m'     n.m J• 

called poloidal and toroidal, respectively.  Thus, as is seen 

from (4.24) when oT = 0, we can satisfy (4.5) - (4.7) by a single 

poloidal u and the corresponding T and P.' This will not be the 

case when 5/ 0.  The existence of the term 2(7o x u) makes the 

latter problem more complicated.  A method of dealing with this 

complication will be given in the next section. 

5.    We denote u* in (4.9) and (4.14) by u„ (I)   and u*  (II), n. * in        ii • ill 

respectively, and shall try to satisfy (4.5)..f  44.7) b,y putting 

"u = y~ u  (i) + u  (ID ..(5.1) £•—  n.mv '   n.nr ' n 
-•* —*> 

The &   parts of all u   (I) and u  (II) may be taken to be cos si« ^ * n.m        n.m      J 

(m = 0, 1, 2, . * .).  The reason why we may assume these forms 

can be understood from (4.5) - (4.20).  Equation (4.11) and (4.21 

still bold for each pair of (F , G„  . T w) thus introduced. n.m  n.m  n.m 

We now make the following transformations of variables 
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(  = -,     P       (f)  = K-F       (r),     G n.isi -B,,rn,invr'*     un.m^} n.m       ' 

L       ( f )  ~  L       { r-) n.mx> ' n.m n.m<*>  =Tn.m(r)>    Wf)  = X
r>    yn'O   /        '     x „    „ V x 'I » JL„   m * > >       "    "n.m"* '  * X 

kO       f Ct ^ O \ 

fe   shall  denote 
d P  (i)  o„ dF . 

je2     £  d§ •   n.mv>'* 
by f   ( f), 

*     n .m'5 ' - u>        5 
•- - -.  By using these notations, (4,11) and (4.21) can be 

rewritten as follows 

*!!*<*>    =    -   ^K-   far    JO    *f\jf)l (5.5) 

fnf      (f) + C2S      (Ol - ~1~-r     V/1'"    * ^ 6 T  "   (f) = 0 (5.4) I       n.mv-> '       >   &n.mV5' *n-l d| v    •>    n.irr w 

In order to get more relations among unknown functions, operating 

with i?  ( T} (which will be denoted by tin(l) hereafter) upon (4.5) ~"n.mx * ' "  P 

and integrating, we get 

a    it     2% p 
(     (     (       (4.5)   •  tL(l)  v  sin e drd0d£    = 0 „,(5»5) 
Jo   Jo Jo P 

Inserting   (5.1)   and   (5.2)   Into   (4.5)   In  (5.5)   and  carrying  out   the 

integration,  we have 

^C(f)f2nP   (npPp+|
2Gp)   d| 

'o 

1. /r x i- 2np +• J    D(f)f^ Fp df ^5.6) 

or 
n„ 

c(l) = <Vp + |%) - -i       ^V ^f» 

2Wa2 n -n P+l [V^J       H*   °    P"ri Jl  ^#a>La = °       »(5*7) 

*>(§>= ^  -^-^[W11   Zo(P)J 
1  -I 
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n -n„+l 

% .- 
I  ((3)   -     (      (Pft)      sin 0 d© ,(5.9) 

2- / Igta-P)   La -  0 ,(5.8) 

where 

L^a.p)  -    C  '  P    -g| sin29 d9 ,(5.10) 
Jo 

7t 2 dp    dP 
^(o.p) = Ig(p.a) =   j      ( —Sg- PaPp + -g| -4|)sln9 cose d9  f(5JDL) 

ma 
Pa C! Pna 

(e)p    Fp = FnpSmp9  - -  - ,(5.12) 

Similarly,   operating with u.-.(II)   upon  (4,5)   and proceeding  in  the 

same   way   as   above,,   we  get 

2(n +1) 
{    B(f) f' Lft   df-  0 ,(5.13) 

or 

>rr^  r -   ^^     n -nft-l -l  v     ^ap 

"a" *v>'       ^p   '      v     [_np    P i;   VPiJ 

[Pa i^a.p) + (nGPa +|
2Ga) I2(a.p)J       .(5.14) 

If equations (5.3), (5.4), (5.7), (5.8) and (5.14) are written 

down for all p*s concerned, we see that we have sufficient numbers 

of equations to determine the unknown radial functions.  As was 

said immediately after (6.1), the values of mR of these radial 

functions are constants equal to a fixed value m, say.  Furthermore, 

as is seen from (5.7)* (5.8) and (5.14), the velocity vectors u 

and un with I, (a,(3), Io(a,(3) ^  0 may be considered to be coupled 

by the action of Coriolis force.  In view of these circumstances, 

we may call I, (a,|3) and Ig(asp) the coupling integrals.  Now it 

can be easily shown that 
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V^ = 2nQ+I (nfl-m?) i >(5.15) 
H       P   P 

IgU^p) = I^Ca.p) + n3(ryKL) ( PaP sinGoose d0  (5.16) 
•^ o 

and that the coupling Integrals I,(asp) and Ip(asp) vanish unless 

n - nQ = +1„  The values of I,(aj,p) and l'2(a,p) for several a 

and p are shown In Table I,  Having thus established the funda- 

mental equations, our next task Is to consider the boundary con- 

ditions,,  By the assumption of a "viscous" fluid, we have 

u   (I),  u  (II) ~ 0 at % -  1        .(5.17) n.m  s       n.m ' 

As the thermal boundary condition we shall take tentatively 

T = 0 at | = 1 .(5.18) 

By (5.18) is meant that the temperature at r = a is kept constant,. 

This is a plausible condition for the boundary of the earth's core. 

Taking (4.9), (4.14) and (4.18) into consideration, we have 

nF   +f2G   = Q ~  L   = T   = 0 at £ = 1 .(5.19) n,m  •*  nsm   n.m   n,m   nsm       -> ' 

P   , G   , - - - must also be finite at r = 0 (or f = 0),  Thus 
n,m  n,nr .-^ • 

our problem is reduced to solving (5„3)s (5C4)„ (5.7)s (5.8) and 

(5.14) under the boundary condtions (5.19).  It is easily seen 
aPg  a^ 

that this   is  an  eigen-v^iue  problem for  X = Q ,    which depends 
_ 2 kv 
OJS. on  the  oarameter •——. v 

6.    By using the results of the last section, we find sets of 

fluid motions as shown below 

U1#Q( I) rfU2eQ( Il)^±U3e0(l) - » -       ,,(6.1) 

U1.0(II)?=^U2.0(I^ *SS±«3.0*II>- - "        »{6>2) 

U, -,(1) <=^up ,(11)^=2^ -(I) - - -        ,(6.3) 
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uia(II);^u2a(I)/^r±u3a(II) - - -       ,(6.4) 

U2 2^ ;*~±'a3 2^ II^~±U4.2'' X'  " " "        *(6*5) 

U2 2( II)*=£u3)g( I) «=^u4 2(II)         ,(6.6) 

U3.3(I) ^^U4.3(ll);;=±:,a5.3(l)  " ~ "        ,(6.7) 
etc. 

Generally speaking, there exi3t sets of fluid motions which con- 

tain u  ( I, or II) with n = m as their first member.  As is 
n.m • 

easily understood, the case when n = m = 0 is an exceptional one. 

This is the most important result obtained in the last section. 

2 2 \3L 0( I) in (6.5) is usually denoted by 50 and it is this S„- 

type velocity which was referred to in section 2.  In a rotating 

2 sphere, the Sp-type motion cannot exist by itself.  It must be 

accompanied by the fluid motions of "3, p(II), u. o(l),  ~ ~ ~ 
2 

types.  We shall call these latter quasi-Sp-type motions-.  For 
2 

the quasi-Sg-type motion, we have from (5.3) and (5.4) 

p dFp     dG 

jai+ ^TT- 
5G2 = ° »"*> 

,(b) etc. 

(6.8) 

,(a) 

4^4. dG4      „ 
f TT+7G4= ° 

dS  +  6  dT2  = 

df2     f ^T 
- ^r- (2Pg+f2G2) 

a  "4   .  ID ai4  _ 
d^s    f w~ 

-   P.8;     (4p  +^G   ) 
k     l**4/     4; ,(b) etc. 

(6.9) 

In (6.8) and (6.9), we write simply Fg, Gg - - - for Pg g(|), 

Go o(f)s - - ""•  Corresponding to C(|) = 0 in (5.7) we have 

r ,,d2p2 „ 4 »a + gG , + J»(
a2°2 + a *8      i   

d<?%> 
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ttSoa    e*m      .    5     0   ,   192. f2       a  0 ,(a) 

if" 

dP 
* +  8   ^4 

d2G, dG o  cl-Q.        -10  dG 
2GA)  tf

2(^i^^ +  »  ^3 +  2G. )   + f""(—r^ + y -g^) i <a^S_) 

ag
oa

e2, 

(6.10) 

in (6.10)     SI = e£ (6.1D 

ind g  is put  equal  to 
g = gn| ,(6.12) 

where gQ   Is   the  gravity  at f »  1,   that  is,   at  the   surface   of  the 

earth's  core.     The  gravity g   in  a uniform  self-gravitating   sphere 

may be   shown to vary  as   in  (6.12)-     Next,   corresponding to 

D(£)   =  0  in  (5.8),  we  have 

d2P2       4  dP2 
K +    ST 

^ 

4   dP2   .   ?r     _ *2   _ ^__fl 384 -2       =n ,    } 
J 3f    2G2    pv    144J L ^r* L3     -        ,vaj 

d2p 4 + 8^4+2r      ,. *4   . £L    , 480x5       +  480x28 - 2 g^-|%)  ~  0   ,(b)-etc. 

(6.13) 

Lastly,   corresponding  to E(|)  =0  in  (5.14)  we have 

A2r & L, 

dS* 
8  dL3   .       7     J2  f r2F- SS. P    + -3-gi (2F0  + f 2G0)1 

r«0p     +  480x5   (^   +f2Gj; »   0 

d2Lc LS       12   dL5 11       O   (&-2T    480x7  _     .   480x23   , .„ 

df I 

+     - 2800x24 p     + 2800x168   , 
ilxl'3' ' r6 " "" 11x13 (6F6 +06) 

,(a) 

/   ~  0   -(b) etc. 

) (6.14) 



If we omit \i    0( I, or II) with n i 4 in (6.5), we get the results 

(a) In (6,8) - (6.14).  In that case, the ?A and &4 terms In (6.14) 

(a) must of course be omitted.  The results thus obtained will be 

called the approximation (a).  Approximations (b) and (u) will be 

defined similarly.  In the approximation (a) we have five unknowns. 

Fo» &?> Ttg, Tp, L~.  In the approximation (b) the number of 

unknowns becomes 10- 

proeeedlng In this way to approximations (c) and (d)-v,» - w 

shall obtain the required solution for (6.5),  Boundary condi- 

tions to be satisfied are shewn in (5.19).  Although the above 

results are obtained for the quasi-Sr)-type motion, samilar 

results may be obtained for (6.1) - (6.7).  It Is, however, almost 

hopeless to solve the eigen-value problem by t2»ial-and-error 

methods.  A method of dealing with the difficulties will be 

given in the next section. 

7.    Taking (5.19) into consideration, we shall put 

^n.m+l^n.m^ (1"^ <Ao + M + " " "}' 

Ln.m= '^-D   (B0 + Blf+- --) ,(7.1) 

where  A  ,  B   ,   A-, »  B,   ---  are  undetermined constants.     Transform 

ing  (5.3)   into 
d(nF +f2G       ) 

we  can calculate  the   value  of  G by  (7.1)   and  (7.2).     Inserting 
n •in 

G   thus obtained Into (7.1), we get V       .  The form of nF   + 
n.m "   °   n.m n.m- o .     . . 
F~G   in (7.1) is so adjusted as to make P   vanish at f = 1, 

n.m n.m 

Next, inserting (7.1) into (5.4), we have the following differ- 

ential equation for T n.m 
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o / 2lBt±l ('  n-m  -  _ EiLl T~    &' eJ f7   Vi 
*?-     *—*? rV f 

where A* is a certain constant which, is a function of AQ# A-, - - - 

in (7.1).  The equation (7.3) is solved in the form 

3 A   '      —        •  • 
in.m^ k ;    A   <r- (j+2)( j+3+2n)5 »v.*/ 

where Aw   is  a constant which is  determined  so   as   to make T    _   in n.m 

(7.4) satisfy the condition (5.19).  The value of A" thus adjusted is 

*" • 11 Ti&Kr&m (7-5) 

Inserting (7.1) and (7.2) into (5.8), we can calculate it   .  Thus, 

with nF   + 1 G   and L   in (7.1), ft© can satisfy three groups 
ri.in     n.m     n.m 

of differential equations, (5.3), (5E4) and (5.8).  There remain, 

however, two groups of differential equations to be 3olved.  They 

are (5.7) and (5.14).  We have also two groups of undetermined 

constants A , A-,* - - -B , B, - - -.  We shall now try to satisfy 

(5.7) and (5„14) approximately by choosing these constants ade- 

quately.  Inserting (7.1) - (7.5) into (5.13) and 

3 ?-r o 
j     C(f)#     P(h^Pp  + f^Gp-Jdl =  0 ,(7.6) 

o 

(see   (5.6)   and the   equation D(f)  = 0  above   satisfied)   we have 

equations   of the  following forms 

JL 2n„ o 
AO C   c(f)f   P(i-§raf = o, 

-Jo 

2n„+l 
x C    C(f)|     P     (l-f)2df =0,  ,(7.7) 

Q C     E(f)|-      P       (l-f)df    =  0„. B o    , - o 
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.1 2(nfl+l)+l 
B,   \     E(§)|       p (l-f)dj= 0,  .(7,8) 

These   equations  will  be  used   to  determine   the   values   of  A   ,   Aij   ---, 

B   ,  B1,   -   -  -.      In order  to   show   the  way  of  determining  A_,   -  -   --, 

we   shall   take  up  the   approximation   (a)   for   the  case   (6.5).     i"a 

2 
shall,   furthermore,   take   only  the first  terms   of  2Fp  o   ¥ >    Go  o. an<^ 

LQ  0   in  (7.1).     The  equations   thnt  determine  A     and B     ere  obtained 
£J « <> o o 

by   (7.7)   and   (7,8),   as  follows: 

(11.  18. 30. 21.  28.  13 X " I5)Ao *  (   2T75)Bo s °* 

In  order  that   these   equations be   compatible,   the  determinant 

formed by  the   coefficients   of A     and B    must be   equal  to  zero. 
A    ~ O O a ctpg 

The  equation for "A. = . , 2. thus  obtained  is 
kv 

o ..... 

X =  10602.5 +  1.869941 2    ,   iZ    = ~- l(7.1G.) 

It   is  to  be  noted  that  this   is   a relation  of  the   same   type   as 

(3.12).     The  values   of X  in  (7.10)   have  been calculated for   several 

j I    's   and   are   shown  in  the  column  (a,l)  in Table   II.     The results 

* 2      - obtained by  taking  the first   two  terms  of  2P0  0 + £   GQ  Q   and LQ  0 

are   shown  in  the  column  (a„2)   in the  same  table.     Similarly,   the 

(b.l)   and  (c.l)   values  of  X  are   shown   in Table   II,     From the 

results   in this  table we   see   that we may use  the   (c.l)   values 

of  X for  the   exact X   in the   case   (6.5)..     The   (c.l)   values   of  X 

for the       cases   (6.1)   -   (6.7)   are  calculated  and   are   shown   in 

Table   III.     A discussion  of  the  results  given  in Table   III will 

appear   in  the  next   section. 

8. As  is   seen from Table  III,   if we put ~& a 0  in  (6.1),   (6.2), 
4 4 «.-.«-,   we   get   the   eigen-values  X =  0.811  x  10   ,   1.06 x  10   ,   -   -   «0 
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The  eigen-functions  corresponding  to   these  eigen-values   .are   or 
o  o  1  1  22      3 pure S~  S,-,s S~, S0, SD, S~, and 3., types.  These are nothing but 

the results obtained by H. Jeffreys, M. E« M. Bland and S. Chandra- 

sekhar (H. Jeffreys and M. E. M. Bland, 1951: S. Chandrasekhar , 

^12 2 3 1952).     The  minimum  values   of A   in   the   cases XL    =  0,   10   ,   10     and 

10i   are  eriven by  the  fin id motions  of  the   quasi-S, ,   S-, ,   St.   and Sr - J 111 a, 
types,   respectively.     The  minimum \  increases  with J L    .     These 

relations correspond  to   the  b~'(^——)     and A(min)-~*-' (———)   relations 
v v 

of \  3.  Prom our present point of view, it is important that the 
2 

quasi-Sg-type motion becomes the easiest type be be excited when 
O o     4 iL     = 10 „  We shall now estimate the value of the kinematical 

viscosity v corresponding to 
— 2 

^2 * , „4   r\    z.  UA _ -,^2 /o T N 
J<:  7 10 *  JZ 7 -~~ =10 .(8.1) 

Putting 0) = 8Q^Q0 (see)"  and a = 3.4 x 10° cm into (8.1), we have 

"112 v = 10  cm /sec.  In shortj if the kinematical viscosity of the 

11        2 fluid   in the  earth's   core   is   about  10  ~  cm /sec,  we   shall have   the 
2 fluid motion of   the   quasi-Sg-type.     This   value   of   v   is  very  large 

compared with  that  which was hitherto  estimated  for  the  earth's  core, 

i.e.,   v =  ]G•2'~'10~3  cm2/sec   (E.  C.   Bullard,   1949).     This contradic- 
-2     -3 tion may be avoided as follows.  While the viscosity v = 10  -—' 10 

above referred to is the molecular one, what our present study is 

concerned with may be some kind of equivalent viscosity.  In our 

present study, for example, the existence of a magnetic field in 

the earth's core and its prohibitive action on the convection 

(3. Chandrasekhar, 19 52) have not been taken into account.  The 

equivalent viscosity of the magnetic field may be estimated as 

follows:  The equations of motion in a magnetic field are 

§f = -^~  (curl H x H) + vV2u + - - -      ,(8.2) 
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~»(curlHxl)-v?2u ,(8.3) 

may be   used   to   obtain  an expression  for   the   equivalent   viscosity 

of  the magnetic  field, 

v=^ .(8.4) 

In   (8.4),   L,   H  ard U   are   representative   values   of   length,  magnetit 

field  and  velocity.      Inserting f> =  10,   L =  3  x  10",   H = 40  and 
TT =  0.03   Into   (8.4),   we  get  y^K6'2Qv~   cm  /sec  which  is   of  the   orde 

of  magnitude required   in   (8.1).     We   shall   now  consider   the 

corresponding   value   of 

\  =  2.3 x 104 (8.5) 

obtained In the last section.  Inserting g — 10 , a = 3.4 x 1G , 

a ~ 10"55 k = 10"
1 and v = 10   Into 1,8.5), we get 

(3 = 2 x 10~18 -?• (8.6) em 

As was  stated   in section 3,   (3   Is   the   temperature  gradient 

(at  the   surface   of  the   earth's  core)   in  excess   of  the  adiabatic 
-5' one.     The   latter   is  estimated  In  the  core   to be  10     .     Thus   the 

o 
quasi-S^-motion  can  exist  in  a  stationary  state  with a  thermal 

gradient  which differs but   little from the   adiabatic   one.     In 

estimating  (3   in  (8.6),  we used  the  value  of   the molecular  thermal 

diffusivity for  k.     Even  If  we   substitute   some   kind  of  eddy 

uiffusivity  for   it,    the  result   obtained   above  will   not be   changed 

much. 
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Table   I. 

m 
r i 

* a 
m 

"a Xl 
T 
"T3 

1 o 2° 4 
5 

4 
5 

3° 2° 12 
3F 

48 
35 

3° 4° 40 
" 63 

40 
21 

5° 4° 4C 
59 

80 
33 

t-0 o 6° 84 
~11x13 

15x28 
TlxT3" 

23 12 
5 

12 
5 

31 21 96 
ST 

384 
"35 

31 41 200 
"—2T 

200 

51 41 320 
""33" 

640 
"IT 

51 61 735x4 
11x13 

735x20 
11x13 

22 32 192 384 

4^ _2 
5 

480 
7 

480x5 
7 

42 52 480x7 
"      11 

480x28 
 T"1  

XX 

62 52 2800x24 
11x13 

2800x168 
lixiar 

S2 rjd 256x63 
13 

256x63x6 
13 

33 43 -800 15x160 

53 43 32x32x35 
11 

32x32x35x6 
XX 

53 63 840x3024 
"    11x13 

315x40x1008 
11x13 

rjQ ,3 
D 

120x72x56 9 60x72x56  13 
13 

tjO 83 220x126x72 
17 

220x72x14x63 
17 

m m 
a 

T Ll 

2° X 
4 

15 
4 
5 

2° 3° 24 
"33 

48 
35 

4° 3° 8 
21" 

40 
2T 

4° 5° 20 80 

D o 60 
11x13 

J.OJWO 
11x13' 

6° 7 16x7 
l3xi5 

96x7 
13x15 

1 

21 I1 4 
5 

12 
5 

21 31 192 
35 

384 
-35 

41 31 40 200 
7 

41 51 160 
~TT 

640 
~TT 

61 51 105x20 735x20 
18x11 

61 71 16x8x14 
13x5 

9 6x8x14 
.L3X0 

32 22 96 
T 

384 
~7~ 

32 42 800 
 17— 

2400 

52 42 32x70 
11 

480x28 

52 62 735x128 
"   11x13 

2800x168 
' 11x13 

1 
„2 
o 192x63 256x63X6 

"    13 • • 

72 82 81x64x7 
-        1? 

567x64x7 
17 



-24- 

_ft2 (a.l) 

_   . _        .      _ _4 
Table   ii A  in IU   . 

(a.2) (b.l) (cl) 

0 

10' 

10l 

10 

U*060 

1,079 

1.247 

2,930 

1.06 

1.08 

1.27 

3.03 

1.078 

1,236 

1.078 

1,235 

Table   III X  in 10 

n       U1.0(I)    ^l.O*11*       Ul.l^     U1.1(II>     U2.2^     u2.2^^     u3.3(i: 

0 

104 

10l 

TO 

0.811 1.06 0.811 1.06 1.06 1.53 1.53 

0.862 1.11 0.849 1.10 1.08 X v OO 1.54 

1.225 1.55 1.13 1.48 1.235 1.79 1.64 

O  CD 3.70 2.48 3.47 2.31 3.52 2.44 
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